# ANDANTE SOC2.1 - VISAGE 2



••



### Overview

- CSEM's Visage ML SoC series target ULP system-on-chip (SoC) solutions that enable hierarchical processing of machine-learning inference, scalable from sub-mW power consumption to more than 1 TOPS/W efficiency at high throughput for different scenarios.
- Visage aims for moving towards computer vision at the extreme edge, where the computational complexity challenges the strict energy constraints of miniaturized and mobile devices.

**ML** compiler

| ature                     | Visage1            | Visage2          |
|---------------------------|--------------------|------------------|
| tal Memory Size           | 1.2MB              | 4MB              |
| /M Storage                | Off-chip           | MRAM + Off-chip  |
| ways-on Detection Engine  | Y                  | Y                |
| onv. Neural Network Acc.  | Y                  | Y                |
| Clusters                  | 1                  | 4                |
| arsity Exploitation       | -                  | Y                |
| lective Execution Support | -                  | Y                |
| omain power gating        | -                  | Y                |
| emory power gating        | 512 kB granularity | Bank granularity |



Computer Interaction

# Tools & Methodology



#### Flows (Initiated within ANDANTE):

- Quantization-aware training
  - Mapping: Python-based ML compiler

    Converting ONNX-format input file into a binary file that is
  - loaded into the memory along with the application code.
- Verification and validation





#### Model and dataset from UC5.2: • LeNet-based 13-layer CNN • 6-class Glance Detection

| MAC precision      | TOPS/W (block) | TOPS/W (system) |  |
|--------------------|----------------|-----------------|--|
| 16b                | 5.9            | 3.2             |  |
| 8b                 | 10.9           | 6.1             |  |
|                    |                |                 |  |
| Peak<br>Throughput | C3             | C4              |  |
| GOPS               | 20 (16b)       | 200 (16b)       |  |

### Results

A sub-mW dual-engine ML inference system-on-chip for complete end-to-end face-analysis at the edge.", 2021 10.23919/VLSICircuits52068.2021.9492401

A Construction Kit for Efficient Low Power Neural Network Accelerator Designs, 2022, https://doi.org/10.1145/3520127

An Ultra-Low-Power Serial Implementation for Sigmoid and Tanh Using CORDIC Algorithm, 2023, 10.23919/DATE56975.2023.10136960

Power consumption mW @ peak throughput

## Impact

- Follow-up industrial and EU projects
- Demonstrators for fairs, events, and customer meetings
- CSEM's IP Library for Edge ML

# Progress beyond SoA

- End-to-end ML inference at the edge with hierarchical computing
- At-par performance, while providing higher flexibility / flexible performanceenergy scaling

## Lessons learned

 Heterogeneous computing platforms with dedicated accelerators (e.g., Visage) provide scalability and flexibility, which are key to keeping up with fast-moving application trends.

### ANDANTE



randante-ai.edu in linkedin.com/company/andante-ai





ECSEL Joint Undertaking

"This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement № 876925. The JU receives support from the European Union's Horizon 2020 research and innovation programme and France, Belgium, Germany, Netherlands, Portugal, Spain and Switzerland"

Scan Me to visit website